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Uniaxial and biaxial soft deformations of nematic elastomers
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We give a geometric interpretation of the soft elastic deformation modes of nematic elastomers, with explicit
examples, for both uniaxial and biaxial nematic order. We show the importance of body rotations in this
nonclassical elasticity and how the invariance under rotations of the reference and target states gives soft
elasticity(the Golubovic and Lubensky theorgriThe role of rotations makes the polar decomposition theorem
vital for decomposing general deformations into body rotations and symmetric strains. The role of the square
roots of tensors and that of finding explicit forms for soft deformatigins approach of Olmstgdre discussed
in this context.
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[. INTRODUCTION whereg =¢ — ITE] ¢ is the traceless part of the linear sym-
metric straine;; = %_(ajuih?iuj), andQ=3curl u is the an-
Nematic elastomers display three unique and related phaisymmetric part(the body rotatioiy u being the displace-
nomena not found in conventional elasticity—large spontament field.
neous deformations, very large optical-mechanical response, The latter terms are those of the relative rotatidd (
and soft elasticity. The last, shape change with little or no— w) X n coupling: for small rotations, the director variation
energy cost, is the subject of this paper. We give a geometricorresponds to a rotatiom=nX én,, or én,=wXn, see
interpretation of the soft modes described using fractionakig. 1. Similarly, a small rotatio2 of the matrix causes a
powers of tensors. We then discuss the soft modes of biaxialectorv in the body to suffer the changdv,=QXv.
nematic elastomers. Since in contrast to conventional elastic The net rotation oh with respect to the matrix inflicted
solids, rotations play an essential role in the elasticity ofby the relative rotatiof2— w of the matrix @) relative to
nematic rubber, we conclude by discussing the related queshe changing director ¢p) accordingly gives a relative
tions of breaking finite strains into symmetric shears ancthange imn of
rotations, the polar decomposition theorem for tensors, and
the nature of square roots of tensors. Sn=(Q—w)Xn.
Nematic elastomers have an internal, orientational degree

of freedom in addition to those of ordinary elastic bodies.the girectorsn andn, before and after application of strain
The anisotropy of molecular orientation induces shape anyre not distinguished in the first terms of equatidn for

isotropy in the polymers that make up the elastomer. Thgmga)| director rotation, but clearly must be in the relative
switching on and off of this molecular shape anisotropy, €i-gtation coupling terms iff.

ther by temperature chan§g] or by illumination[2], causes
large (=400%) mechanical shape changes.

Rotation of this anisotropy, by imposed mechanical
strains, is the extreme optomechanical effect that is observev.Olume and we neglect the first two terms in Ef) since

When accompanied by subsidiary shears and contractloqﬁey involve volume change. The geometry of the remaining

that accommodate the changes of molecular distributions, thS rains is vital and shown in Fig. 2.

cost of the originally imposed strain is rendered to zero. This The de G lati . i .
is what we call soft elasticitja]. e de ennef4] relative rotation couplings are unique

to nematic networks because they require an independent,
rotational degree of freedom, i.e., the rotatian®f the di-
rector n. Its motion in the medium is coupled to the body

The tensorg is the strain before it has been made trace-
less, that is, it still has volume changesd)(in it. Since
(r]ubber is a soft material, its deformations are at constant

II. SOFTNESS IN LINEAR CONTINUA

One can explore the related ideas of anisotropy, rotation 5\141 =wXxn
and soft elasticity initially for small deformations and rota- 6¥A= Qxv n
tions, that is within the linear continuum theory of a uniaxial v 3
body with a mobile directon that characterises the anisot- w=mnXxdn
ropy direction[4]. The free energy density is Q1 o .
3
Vi

F=3B(Trlg])?+ 3k Trgl(n-g-n)+ po(n-g-n)?

+2uq[nX g X n]%+ % uo([nX gl n)2 FI_G. 1. Rotation ofn about an axisw, and body rotationg2
rotating vectors. Only (2, and(); (not shown have any effect on
+3D[(Q—@)Xn]?+3D,n-g-[(Q—w)Xn], (1)  vectors parallel to.
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reference state must be invariant under the double set of
rotations of both the reference and target states when consid-
ering elastic deformations. This has the remarkable conse-
gquence that some elastic deformations must be soft. This was
discovered independently and in a superficially different
form when studying at finite deformations the elastic re-
sponse of nematic elastomg8. We sketch how this can be
understood for elastomers in order to explain the complex
soft modes we shall later discuss.

An effective shear modulus arises for an imposed elastic
strain, when the nematic director is free to evolve optimally.
The elastic moduluge, is reduced; by the symmetry argu-

FIG. 2. The elements of strain in a uniaxially anisotropic me-ment it must vanish to give no overall energy cost. If the
dium. Dashed lines show the undistorted state, whereas the strainé@cal rotational componerf2 of the deformation of the elas-
elements are shown by shaded areas. They divide into stretghes tic matrix and the rotation of the director are coaxial, i@.,
along n, stretchese,, and &, and distortionse . in the plane and w are parallel and uniform, the argument is simple.
perpendicular ta, and distortiong ,,, ande ., encompassing and ~ Minimizing the relative-rotation part of the energy density
the perpendicular plane. (1), 3D1[(Q—w)Xn]?+3D,n-g-[(2—w)Xn], one ob-
tains the optimal relative rotation for a given shear stegin

rotation 2. Hence, the elastic energy unusually involaes

tisymmetriccomponents of shear strain. In Sec. VI, we ac- D,

cordingly show how to extract the rotational component [(Q—w)xn]=—2—Dl(n-§) or

from any finite shear. The first coupling, purely resists the

rotation of the director relative to a rotating, undeformed D,

matrix. TheD, term couples: to the symmetric part of shear (Q-w)=—5--[n-exn]. 2

in the plane that involves (e.g., g, if Ng=n, in equilib- !

rium). These are the sheass,,, and e, in Fig. 2. Since  We now substitute this back into the energy density and ob-
infinitesimal, incompressible symmetric shear is equivalentain for the rotation-strain terms:

to stretch along one diagonal and compression along another,

it is reasonable that prolate molecules will reduce the cost of 3D [(Q—w)Xn]?+3D,n-g-[(2—w)Xn]
distortion by rotating their ordering direction to being as D2 D2

much as possible along the elongation diggonal, depicted in - —Z[n-§><n]25——2(sxzz+sy22). @)
Fig. 3. Oblate elastomers rotate their director toward the 8D, = 8D,

compression diagonal to achieve the appropriate elastic ac- L . . e :
commodation. The spheroid represents the anisotropic sha {e last expression is written in the specific coordinate frame
ere the initial directon, is parallel toz axis. We can now

distribution of the crosslinked polymers from which the net-"™"" . ) . ;
work is composed. unite this expression with the rest of the elastic energy den-
A theorem of Golubovic and Lubensk@GL) [5] shows sity, Eq. (1) and thus obtain the effective rubber-elastic en-

that on symmetry grounds any solid with an internal degre@rgy that depends only on strains; the director does not ap-

of freedom which is also capable of reaching an isotropid®€a- For instance, in the specific coordinates of Fig. 2,

1 2,1 2 2 2
F=2108,, Tama(Exy +28xy teyy )
2

D2
+3| o 4_D1)(Sx22+8y22)- (4)

The modulusu, is renormalized tqu,— D§I(4D1) which
by the GL theorem must be zero, thus establishing a relation

on
1,
0 ; n between the constantg,, D;, and D,. The molecular
model, required below for finite deformations, produces lin-
z ear continuum limiting values that also give

n
”}JJ?JJ D3

M§=M2—4—Dl—>0- )

FIG. 3. Symmetric shear induces director rotation toward the ] ] ) )
elongation diagonal. The respective elongations and compressions Olmsted[6] first proposed this continuum mechanism be-
along the diagonals are shown. The chain shape distribution als@ind the Golubovic-Lubensky theorem: shape depends on the
rotates. When mechanical shape changes of a network accomm@rientation of an internalnematig degree of freedom, the
date the rotations of the chain distribution without distortions, suchrotation of which causes a natural shape change at zero cost
shape changes can take place at minimal energy cost. for suitable solids. A general discussion of the GL argument
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and its extension to semisoftness and thresholds to rotation &f strain at finite amplitudgtthe spherical decomposition
given in Ref.[7]. The experimental evidence for mechani- theorem and the relation of the roots of tensors to this pic-
cally soft distortions is also discussed there. ture.

One can picture the continuous rotation generating me-
chanical distortion at low energy cost, see Fig. 3. The natural IV. UNIAXIAL SOFTNESS
long axis of the body, as defined by the principal axis of
molecular shape, rotates in an attempt to follow the apparent Consider the straif6]
extension axis. To the extent that macroscopic shape change _ovAy -1
can thus be imitated, there is no real accompanying distor- A=W, £o @
tion of polymer shape. We quantify this picture below when

considering nonlinear elasticity theory. whereW, is an arbitrary rotation by an angte. There are

two continuous degrees of freedom describing the rotation
connectingn and ny and three degrees of freedom for the

lll. FINITE SOFT ELASTICITY rotation W,,. Hence, the strain is described by five con-
A simple extension of classical rubber elasticity theory totinuous d_egrees of freedom and thus represents a large set of
nematic elastomers gives for the free energy density deformations. o
If we insert such a strain into the trace formuB, as
F=LuTr(foAT-€ 1)) (6 Well as its transposa" (equivalent to, ¥ WJ- ¢ since

the ¢ are symmetricwe obtain

whereu is the rubber elastic shear modulus in the isotropic
phase and\;=dJR;/JRy; is the homogeneous deformation
(gradienj. If we take\ to be = §+u, then the symmetric
part ofu is identical tog of Eq. (1) in the infinitesimal limit. =IuTr(d)=
The chains are no longer characterized by spherical B
Gaussian distributions as in the classical case, but in gener&'anceling the middle sectio@,l’z-f*1-£1’2: 5, allows the

by anisotropic distributions. Thus the effective step lengt SV R L )
tensors{, initially and € currently after a distortion, are }\L\/terms to meet and givéy"- W= 9. Likewise disposing of

L . = s T o g .
prolate (or oblate spheroids defining the second moments?h?foterms’ one obtains the final expressieg=;u. This

that characterize the Gaussian distribution of chain spgans > identical to the free energy of an undistorted network. The
in the the network, that i$,R,R)=1¢;/L whereL is the arc nontrivial set of distortiong of this particular form, Eq(7),
length of a chain. +hus a r,ntlaa]sure3 olf] the mean size of a cham’we not raised the energy of nematic_f-lastomer. F_rclxm the
is ¢¥2 where we shall soon define the roots of tensors mor%ensdu“ée[t)gvt)e‘;%) :foDreg'Igl\) Irjoet;(?czr,]sDV?/t(éonézgaDnet?gg it
carefully. The tenso€ has one principal valué; alongn Det()\)—D=et(_€1/2 W {5‘1’2)—|1 tha=lt,is o oan see A
and¢, perpendicular to; thus 2) = " Wato )T '

+ perpendic » are volume preserving.

Fe|: %MTr(go'561/2_!\/;.ﬁl/Z_g*l_gl/Z'Wa.gal/Z)

N W

. ®

¢, 0 0 1.0 0 We saw pictorially in Fig. 3 that, on applying a stretch
perpendicular to the initial director, rotation of the chain dis-
¢(=| 0 ¢ 0]=¢ |0 1 0], tribution is accommodated by the very elongation we have
0 0 ¢ 0 0 r applied, together with a shear. Two remarkable consequences

immediately follow from nematic elastomer response via ro-

wherer=¢;/¢, . The extractedt, factor from ¢, cancels tation: _ o

with the 1#, factor extracted fromf ~* when both tensors _ IMpose anx extensionh,,. All the accompanying distor-
appear together in the trace form:(@ and we can hence- tions must be in the plane of rotation, that is, a transverse
forth just consider thel tensors in their reduced form that contractioni;, and shears\,, and A, accommodate the
simply depends on the intrinsic anisotropyAnisotropy var- rotation of the distribution. No shears perpendicular to this
ies betweerr =1.1-60. In this model of rubber elasticity Plane, that is, involving direction (yy Ay, . . ., etc), are

the spontaneous elongatiag,, on going from the isotropic N€eded. For a classical isotropic elastomeg, =\,

to the nematic phase turns out to bg=r3 and is thus a =1/VAxx is demanded by incompressibility, whereas in soft
direct measure of. Indeed spontaneous elongations in the€lasticity there is no shrinkage in thedirection (,,=1)
range of\ ,,~1.03—4.00 are observed. and the appropriate Poisson ratio is zero.

Now distortions\ are no longer small, but must continue  Figure 4 shows the initial and final states of which the
to respect volume conservation, DelE 1 in the nonlinear shear and partial rotation of Fig. 3 is an mterme_dmte step.
regime. The directorsi, and n, of the initial and current Softness must come to an end when the rotation is complete
nematic states, may be greatly rotated from each other. ~ and thez dimension has diminished in the proportian,

The remainder of this paper is concerned with explaining= V¢ /¢) and thex dimension extended in the proportion
the character of the soft modes within finite elasticity theoryhx= V| /€, . The original sizes\¢; and ¢, have trans-
and extending this picture to that of soft modes in biaxialformed to+/¢, and /¢, respectively. Thus softness would
nematic elastomers. We explore the role of rotations and theease and director rotation be complete?xg,tzrl’zz)\ﬁfz.
connections between the isolation of rotational component$he strain)\mz(fH/(il)l’3 is the spontaneous extension suf-
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FIG. 4. Chain shape distribution before and after rotations. The
extent of soft extensions\(,) perpendicular to the initial director is
set by the anisotropy of the molecular shape distribution. The mac-
roscopic dimensions are shown changing affinely with the distribu-  F|G. 5. Soft deformations of a nematic elastomer with anisot-
tion, for instance, the dimension changing froy¢, to ¢. ropy r=2. The deformations correspond to director rotation® of

=0, /6, w4, w3, 57/12, andw/2 that parametrically generate
fered on cooling to the nematic phase. Likewise one camhe distortions as discussed above. Note that the prolate spheroid
imagine from an oblique form of Fig. 4 that if the initial characterizing the distribution of chains, embedded in the distorting
directorng (long axis of the shape ellipsgids not at 90° to  solid (shaded and shown in sectjprwhen rotated by can be
the imposed strain, then rotation and softness is complete atcommodated without distortion. The reference, undeformed body
a smallerh <\ p,. is shown in outline; the original distribution shown dashed.
We give as a concrete example the set of soft distortions

Moo= €52 €o 2, simplified by the absence of the arbitrary sir?4. Thus the infinitesimal strains,, and uy,, at small
rotation matan They are simply characterizeghara-  rotationsé, are proportional ta#?. By contrast\,, and X,
metrically) by the angleg by which {ois rotated tof 4, that ~ are proportional to sificosé and hence the infinitesimals
is, by whichny is rotated tan. Putting in the dyadic forms for u,, andu,, are proportional t#—a lower order thani,, and

€5 M2 and €32 into \ o gives U,,. There is no relaxation alony, perpendicular to the
plane of rotationn, that is,\y,=1. Also note that in the
T 1 isotropic limit (r =1) this particular straim s,q= ¢ while the
Nso= [+ (T =1)nn"]-| 5+ ?‘1 NoNo general soft deformatiof¥) reduces to the null stra,,, a
simple body rotation. Both are the trivial cases evidently
_ B T _ T preserving the elastic energy at its minimum. The soft modes
_§+(1/‘/F 1)n0no+(\/F 1)nn become nontrivial deformations when the material becomes
+(nng)(2—\r—1/Jr)nng. (99  anematic elastomer.

The soft modes start at no strals= §, and as the director

If n, is alongZ and is rotated by toward¥, it becomesn ¢ rotates from 0 tor/2, they eventually end at

=Zzcosf+xsing. We can write down a particular represen- Jr o o
tation of Ao (Using the notatiors=sin § and c=cos¥):

~~n 1
Neoi=22"| 1—| 1——| &2
A soft [ ( \/F

»=| 0 1 o

0 0 1Nr

that is an extension,,=+r and a transverse contraction

+XXT[ 1+ (\r—1)s2]+yy"

s 1 . N,= 1N,
+txz'| 1- N sc+2xX'(\r—1)sc The director rotation is taken up by a shape change so that
there is no entropically expensive deformation of the chain
2 distribution as when a conventional elastomer deforms. The
1+ (‘/F_ s 0 (- 1nr)sc shape tensor’s anisotropy= € /¢, characterizes the ratio of
= 0 1 0 . the mean square size along the director to that perpendicular
(\/F— )sc 0 1—-(1-1hNs? to the director. The square root of this ratigr;, gives the

(10) characteristic ratio of average dimensions of chains in the
network. During a soft deformation, the solid must change
The soft modes are neither simple nor pure shear, but a mixshape such that the rotating elllpscﬁH2 characterizing the
ture of the two. Accordingly, the soft modes have an elemenphysical dimensions of the distribution of chains, is accom-
of body rotation in addition to elongations, compressionsmodated without distortion. The ellipsoid R-{ !-R=1,
and pure shears. The importance of body rotations is diser in the principal framex®/r +z°=1, that is, in section the
cussed before and after E@). The degree of body rotation ellipse has semimajor axes ¢f and 1. Figure 5 illustrates
is given in Sec. VI. Note that the extensional and compressoft deformations of a nematic elastomer with chains of an-
sional strains X,,— 1) and (1-\,,) are both proportional to isotropyr =2. The distortions are parametrized by the direc-
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tor rotation 6 that ranges between 0 and/2. The chain

shape tensofl/2 rotates without distortion, just fitting in the

solid into which it embedded. The soft deformations of Fig. 5

and Eqgs(9) and(10) of the body are in general nonsymmet- 1+p/2
ric. Below we decompose these into pure shears plus rota-
tions. One can think of¢={5% €, as converting the
initial ellipsoid of Fig. 5 to a sphere by the action of the
inverseggl’2 and then recreating an ellipsoid at an angle
with the action of¢ 5. This is precisely the scheme of Refs.
[8,9] who consider an isotropic reference stétee interme-
diate created after the action 6§ ). We discuss this rota- FIG. 6. The shape ellipsoid for a biaxially nematic polymer. The
tional invariance again below. section perpendicular tois not circular, but has semiaxes of length
V1= p/2. Rotations¢ aboutn=n, generate distortions in they
plane that softly accommodate the noncircular shape as it rotates.
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V. BIAXIAL SOFTNESS

Biaxial nematic phases are rare. They have been found A. Explicit examples of soft modes arising from biaxiality

(Finkelmannet al [10,11)) in nematic polymers since oné  The sjtuation is exactly parallel to that of the soft shears
has more complex molecular structural possibilities. In prln—(g) and (10). Now the soft modes are given ti&/m(f_l/z
- - - A . _¢ =0
C|ple, such polymers could be use_d to make p|aX|aIIy ne.mwhere¢ is instead the angle of rotation about the principal
atic elastomers. They would have rich mechanical properties

i 1/2 &
The shape tensor of a biaxial polymer is directorn. The tensor;~ is

. Ji+pi2 0 0

0 0

! gl 0 Vi-p2 0|, (11)
0 0 ¢

which will then be rotated byb. By analogy with Fig. 5, the
Now the step lengths in the two directions perpendicular taanisotropy in thex-y part of the matrix which is to be rotated
n, £;, and {5, are distinguished. The tensor is reduced byis \r, =/(1+p/2)/(1—p/2)=/¢,/¢,. This measures the
taking out a factor of the mean perpendicular step lengthanisotropy of actualroot mean squajechain dimensions in

€, =3({11¢,), to give the plane perpendicular to the director. The resulting soft
shears in thex-y plane arising from rotationgp about z
1+p/2 0 0 =ng are

1-(1-1Nr sy (1—+r)sscy O

0 0 r
Moiadia=| (LT —1)s4cy  1+(\r —1)s5 0
oot 1 P e (1 Pt 0 0 !
=rnn'+ 1+§ mm' + 1—5 kk (12

More complicated soft shears are possible if these shears are
S N R combined with those previously found in the uniaxial case.
=g+(r—bnn'+zmm —Skk’, For example, in the uniaxial case, Sec. IV above, subsequent
rotation aboutn after the rotation oh itself had no effect
since there was symmetry abautNow that this is lost, such
rotations will reorient the perpendicular directars and k
and thereby induce additional soft shears.

where the axes of the ellipsoid are m, andk (with the
latter a third perpendicular axis given ky=nXxm), see Fig.
6. The biaxiality is p=2[(£,—€)/(€1+€5)]=(€,
—0)l€, .

With fixed n, in the biaxial case one can rotate the aniso-
tropic transverse sectiamk of the square root of the shape  If, however, the axis of rotation does not coincide with a
tensor{*? and accommodate it without distortion by induc- principal axis as in the previous examples, we discover soft
ing shape changes in timek plane. These distortions are soft modes of lower symmetry, which only lead back to an unde-
for exactly the same reasons as in the uniaxial case when formed body after the chain distribution has been rotated by
suffered rotations in thak or nm planes, see Figs. 5. Given 2. Consider, as an example of reduced symmetry, the situ-
that there arénow in the laboratory frame\,, soft modes ation when the chain distribution is rotated around a general
as well as the,, and \,, forms (which are now no longer axis in thex-y plane at an anglg to thex axis (Fig. 7): a
equivalent modes the order of softness has become veryrotation of 7 (Fig. 8 transfers the directon (along thez
much greater. axis) into —n, but the unit vectorsn andk along the other

B. General biaxial softness
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ponents after a rotation ofr. Only a full rotation of 27
would lead back into a state of higher symmetry, in this case,
of course, the identity.

By rotating the ellipsoid of chain distribution, we create
soft modes, which are closely related to the underlying sym-
metry, which is the crystal class of the biaxial ellipsoid, the
dipyramidal orthorhombic class.

Comparing with Eq(7), we see that so far we have set the
rotation\W,, to be the identity. If, however, we were to allow
a general rotation, we would find an even larger set of defor-
mations, in fact described by 6 degrees of freedom: the ad-
ditional rotationsW, and the rotations connecting the prin-
cipal frames of the initial and final ellipsoids each introduce
3 degrees of freedom.

N
N
R
S
W
S
R

\
R
ik

VI. ROTATIONS, SYMMETRIC STRAINS, AND THE
ROOTS OF TENSORS

We have seen in Eq$l)—(4) yielding softness that rota-
tions are vital to understanding soft elasticity. The cartoon of
Fig. 6 shows that soft shears are not symmetric and hence
there must be a component of body rotation present. Here we
explore the role of rotations in symmetry requirements. We
then explicitly extract the rotational component from general
distortions and from soft deformations in particular. The re-
quirements for extracting the rotational components of the
intermediate states of rotation at an angle of0.1a, L, b, strain tensor are mnmately related to finding the square roots
2 5 . : : of tensors that we discuss here since they are used in con-
5, and g . Figure (8) shows the final stage of a rotation by an . .

structing soft deformations.

angle of#. The fine outline shows the initial body shape, whereas A | trixVl be broken d int duct
the highlighted outline illustrates the body deformation as the ellip- ny gene,ra matrixyl can be broken O\fvn Into products
-O or O-S' of symmetric matrice$§ andS’ and orthogo-

soid of the internal chain distribution rotates. Here, we have choseR’ = s . £ =

p=6/5 andr=200/45, or, equivalently, the principal axes of the Nal matricesQ and Q”, which can be restricted to proper

ellipsoid to be 6, 3, and 10, respectively. rotations. In effect, one has a pure shear preceded or fol-
lowed by a body rotatiorithe polar decomposition theorem

two principal axes end up in a general position in thg  [12]).

plane. The same final position of the ellipsoid of chain dis- Note that in the infinitesimal case, we hee 1+ §S and

tribution can be obtained by a rotation around thexis by O=1+ 50, hence §S=4§S" and §O=— §O'. Analogous

an appropriate angle. The corresponding body deformatiostatements hold for the matric& andQ’. This shows that

leaves allz coordinates invariant, but transforms they)  the rotation matrice® and Q' are related to the antisym-
coordinates as if they have suffered a body rotation 8f 2 metric part of the deformation in the infinitesimal limit.

FIG. 7. Rotation of the chain distribution around an a&isow)
in thex-y plane at an angle af/3 with thex axis. The figure shows

aboutz Applied to the deformation, we write
If we were to choose the axis of rotation in an arbitrary
way, we would not observe this feature of invariantom- A=\L.V  or U-\R (13)

where the rotations are denoted YWyor U depending upon
whether they act on the reference or target spaces, respec-
tively, of the deformation. The form of the accompanying
symmetric deformations will depend on the order; they are
denoted byAR and )", respectively, and yield the Cauchy-
GreenT tensorsC and B, respectively:C=\"-\ and B
=N-N.
'We summarize classical elasticity theory to highlight the
differences with nematic rubber elasticity. The deformation
FIG. 8. Rotation of the chain distribution by around an axisin  (gradien is
the x-y plane at an angle of/3 with thex axis. The figure shows
two views of the same situation: the final ellipsoid together with the A= IR [ IR (14)
outlines of the bodies which indicate the corresponding soft mode " ooy
deformation. The outline of the deformed body is highlighted. The
parameters are the same as in Fig. 7. If the target spaceS;) deforms under rotations represented
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by the matrixU, asR’ =U- R, and the reference spac8gl is there is encoded into thefirst a spontaneous deformation
deforms under rotationy as R{=V-Ry, then the deforma- to current conditions of temperature, then a deformation im-
tion tensor deforms as - posed with respect to this intermediate state. Under these

conditions the free energy must automatically be invariant

)\i'j =Uik&Rk/§ROIVE , (15) under operations oY, since the reference state is isotropic
and without a directong to keep track of. Difficulties arise
AM=U-rVT  or A=UT-A-V. then when nematic elastomers are osgynisoftthat is, they

(16) do not deform entirely at constant free energy, because they
do not have a high temperature isotropic reference state.
Thus) records the character of both the target and referencgiowever, they do suffer director rotation, very low energy
states, a property that will be essential in nonideal nematigrajectories in\ space, and a lack of,,, relaxation perpen-
elastomers where an isotropic reference state cannot kficular to the plane ofi's rotation[13]. In these cases, the
reached. The connection with both spaces is quite different igomplete cancellation rendering.X= pu,— (D3/4D;)—0

character from that of the Cauchy tensors. Thus the combigyjis put nevertheless deformations are qualitatively soft and

nation one has to keep track of both directionsandn as strain
evolves.
C=ATA=VTA YUty
=VT AT v=VT.C'.V (17) A. Square roots of tensors and the polar
T decomposition theorem
is manifestly invariant under body rotatiots of the final We quote the classical conditiofis2] for the square roots

(targe} spaceSy and transforms as a second rank tensor inof tensors, that arise too in the all-important condition for

Sr- Since isotropic systems are invariant to rotati®h®f  polar decomposition that is required for nematic elastomers.

Sr. the system’s final energy must be invariant to rotations | A is nonsingular, withu distinct eigenvalues and with

of SR ThusF is a function of the rOtatlondin SR) nvari- v Jor_dan b|0cks1 them_\ has =2* and <2V nonsingular

ants of C and is assured by the above of being invariantsquare roots. At least one of these roots is a polynomial in

under rotations ofs;. As an example, the isotropic rubber  The proof of the polar decomposition theor¢RDT) also

elastic free energy, setting’=¢~'=¢in Eq. (6) is offers a practical algorithm for decomposition: take a nons-

ingular and construct the manifestly symmet}_\iE)zx. Take

the square rooB of A"\ that is a polynomial il "\. Since

AT\ is symmetric, then so iG=+\"\. Then defineQ

—1 ’ Ty 1 ’ AJIRA ’ = AIEA

=suTr(C'-V-V)=5uTr 1 = = = V== TS
ZL R (18 =G~ '\. Clearly, Q"Q=4, that is,Q represents rotations.

(by cyclical properties of the tragelLikewise, B=)-\Tis ~ From this one recovers=G Q.

invariant to rotations of the reference state and transforms

like a second rank tensor in the target state. B. Symmetric strain and body rotation of soft modes

Thus we see that “objectivity,” frame indifference, is We investigate the special case of uniaxial soft modes in

2Ilglsttlonrgoe(riagilac?wlwErlzarl]Strlr(]:g?/etZi%;)l/efr?r:nctgr?ti?]ﬂtjneqt. tr’:‘:(;?at\';\;the x-z plane. They are achieved by rotating the chain distri-
. : . Y Whution around thg axis. The resulting deformation keeps the
have seen that rotations and symmetric shears enter, bo

separately(through the de Genned, term) and coupled -components of the body constant. Hence these soft modes
(through theD, term). In finite elasticity, we see in the trace are effectively 22 and can be easily related to B40) and

S ! . : . Fig. 5.
formula that the initial and final orientations of the solid and . :
its directors enter via the tensof§ and ¢ ! and there are An explicit example of the PDT for decomposing a gen

not combinations lika andC which eliminate rotations. For eralx-z distortion) into a combination of symmetric distor-
NOt comBINAToNS ke Ra_ = che aterotations. For 4, AR followed by a body rotatiotJ, about they axis by an
instance, inserting) - A" into the trace result, one obtains - =

anglea is
F=3uTr((oeART-[UT-¢ 2UTAD), (9 (xxx a) (c s
A soft— =

F=3uTr(C)=3uTr(VT-C'-V)

a d
d b

||>.’
Y

8 Ay

where thq - - - ] have been inserted to emphasize that a body -s C

rotation of Sy effectively adds to the rotation of. That is, a

new{’ evolves:{’' ~t=UT¢ 1U. (The additional rotation is (with s=sin« andc=cosa). One can confirm that the rota-

not necessarily coaxial with that which toai to n.) Not  tion is:

unexpectedly, we see the effect df compounded with the )

rotations implicit in¢ ! since they both live in the target tana=(0—6")/ (N yxtNz2) (20)

space. _ _

Other approaches have been tak&9] to soft elasticity, and thus, for instance, for sir

which apparently circumvent the necessity to follow orienta- L

tions in both spaces, and restore objectivity. One can mea-_. , , 2 2 2
; . . =—(0— = + +(6— )

sure all deformations from an isotropic reference state, that Sne=7j (6=0T) with = A%= (Nt Az (6-57)
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FIG. 9. Off-diagonal elemerd of the symmetric sheax®, and _ _
angle« of the rotationU (dotted ling plotted against director ro- FIG. 10. The two eigenvalues of the pure sh?sﬁrfor a nematic
tation 6 for the soft deformations of Fig. 5 for a nematic elastomer€lastomer with anisotropy=20. For a director rotation of/2, the
with anisotropyr = 20. soft mode deformation becomes a pure shear with extension and

compression ratia/r or 1//r, respectively.

Of course there is no body rotation fersymmetric, that is, _ . . . _ .
5= 6'. One can also confirm that the symmetric shear tensowhich, for small distortions is also proportional #o bearing

is in mind thatA is constant at first order if:
1 16(r—1)
)\R:_ = —
= A d A \/F (24)
MMzt hod =01(0=0") - MyoudF 6" hzz _ As we have seen in Fig. 5, it also vanishesféat /2,
MO+ ' N,y AN AN, M) +8(5—8") where no further accommodation of the shape tensor by ro-

tation is possible. In Fig. 9, we show the rotation and off-
The result420) and(21) break the soft modes down into diagonal element of the symmetric shear occurring during
a symmetric sheax® followed by a body rotatiotd through  soft deformations betweefi=0 and .
an anglea about they axis. Thus the soft mode o= U Notice that both quantities are linear érfor small distor-
-A%. We continue to parametrize them with the director ro-tions. As the director of the chain distributions is rotated
tation 6. The body rotation is through an angiegiven by peyond /2, the solid body rotatiorr and the off-diagonal
element of the sheat become negative. At a director rota-
sing cosf(\r—1)2 tion of ar, the original body shape is recovered, as it should
2\r + sinzo(\/F— 1) be in an uniaxial nematic system under reflection of the di-
rectorn— —n.
tan 0(\/F— 1) 'Similarly, the behavjor qf the pure shear' is instructive: for
- ) (22) this purpose, we plot in Fig. 10 the two elgenvalue9=\8f
2\/F+tanz¢9(r +1) which serve as a good measure of the net presence of shear.
Note that, due to incompressibility, the product of the two
For small sheasmall director rotatior®), the component eigenvalues is constant at 1. Both eigenvalues are linear for

tana=

of body rotation is small too and proportional & small 6, saturate at valuegr and 14/r, respectively, for a
director rotation ofw/2, where the soft mode becomes a
_ (\/F— 1)? simple compression and extension along the principal axes.
a=¢ 2r (23 At a rotation of7r, we recover the eigenvalues of the identity
matrix.
For large rotationsf~ /2, the rotationa vanishes as we  From Eq.(10), we see that the compression and extension

have seen in Fig. 5. Thus it is only at first that body rotationi" thex andy directions are quadratic ifi for small director
plays a part in accommodating the rotating chains. As théoztat";”s-zIn other wordsj,, anduy, too are proportional to
rotation of chains approaches/2, the body is simply ex- ¢°*a“>d” [by Egs.(24) and (23)].
tended or compressed along the principal axes of the original
chain distribution. VIl. CONCLUSIONS

The corresponding symmetric shear straip the off-

diagonal component OSR’ is Soft deformations of nematic elastomers result from the

rotation of the anisotropic chain shape distribution without
1 sincose(r—1) distortio_n gnd therefore Without_ rubber elastic free_ energy
d=—-—"" = cost. This is by contrast to classical rubber, where distorsion
A Jr of the distribution lowers entropy and raises the free energy.
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Explicit forms of these soft modes are derived in the case othe generally nonsymmetric deformations. We make contact
biaxial nematic elastomers using the Olmsted method of thaith the polar decomposition theorem in this context. In do-
square roots of tensors developed for the uniaxial case. Fang so we discuss the roots of tensors that are employed in
both cases we show geometrically what these deformatiorfinding the manifold of soft deformation tensors.

look like. They correspond to rotations of prolate distribu-

tions belng ac_commodated by elastic strains of the body they ACKNOWLEDGMENTS
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