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Uniaxial and biaxial soft deformations of nematic elastomers
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~Received 11 December 2001; published 3 May 2002!

We give a geometric interpretation of the soft elastic deformation modes of nematic elastomers, with explicit
examples, for both uniaxial and biaxial nematic order. We show the importance of body rotations in this
nonclassical elasticity and how the invariance under rotations of the reference and target states gives soft
elasticity~the Golubovic and Lubensky theorem!. The role of rotations makes the polar decomposition theorem
vital for decomposing general deformations into body rotations and symmetric strains. The role of the square
roots of tensors and that of finding explicit forms for soft deformations~the approach of Olmsted! are discussed
in this context.
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I. INTRODUCTION

Nematic elastomers display three unique and related p
nomena not found in conventional elasticity—large spon
neous deformations, very large optical-mechanical respo
and soft elasticity. The last, shape change with little or
energy cost, is the subject of this paper. We give a geome
interpretation of the soft modes described using fractio
powers of tensors. We then discuss the soft modes of bia
nematic elastomers. Since in contrast to conventional ela
solids, rotations play an essential role in the elasticity
nematic rubber, we conclude by discussing the related q
tions of breaking finite strains into symmetric shears a
rotations, the polar decomposition theorem for tensors,
the nature of square roots of tensors.

Nematic elastomers have an internal, orientational deg
of freedom in addition to those of ordinary elastic bodie
The anisotropy of molecular orientation induces shape
isotropy in the polymers that make up the elastomer. T
switching on and off of this molecular shape anisotropy,
ther by temperature change@1# or by illumination@2#, causes
large ('400%) mechanical shape changes.

Rotation of this anisotropy, by imposed mechanic
strains, is the extreme optomechanical effect that is obser
When accompanied by subsidiary shears and contract
that accommodate the changes of molecular distributions
cost of the originally imposed strain is rendered to zero. T
is what we call soft elasticity@3#.

II. SOFTNESS IN LINEAR CONTINUA

One can explore the related ideas of anisotropy, rota
and soft elasticity initially for small deformations and rot
tions, that is within the linear continuum theory of a uniax
body with a mobile directorn that characterises the aniso
ropy direction@4#. The free energy densityF is

F5 1
2 B̃~Tr@ «̃= # !21 1

2 k Tr@ «̃= #~n•«= •n!1 1
2 m0~n•«= •n!2

1 1
2 m1@n3«=3n#21 1

2 m2~@n3«= #•n!2

1 1
2 D1@~V2v!3n#21 1

2 D2 n•«= •@~V2v!3n#, ~1!
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where«=5 «̃=2 1
3 Tr@ «̃= #d= is the traceless part of the linear sym

metric strain«̃ i j 5
1
2 (] jui1] iuj ), andV5 1

2 curl u is the an-
tisymmetric part~the body rotation!, u being the displace-
ment field.

The latter terms are those of the relative rotation (V
2v)3n coupling: for small rotations, the director variatio
corresponds to a rotationv5n3dnv or dnv5v3n, see
Fig. 1. Similarly, a small rotationV of the matrix causes a
vectorv in the body to suffer the changedvV5V3v.

The net rotation ofn with respect to the matrix inflicted
by the relative rotationV2v of the matrix (V) relative to
the changing director (v) accordingly gives a relative
change inn of

dn5~V2v!3n.

The directorsn andn0 before and after application of strai
are not distinguished in the first terms of equation~1! for
small director rotation, but clearly must be in the relati
rotation coupling terms inF.

The tensor«̃= is the strain before it has been made trac
less, that is, it still has volume changes Tr(«̃= ) in it. Since
rubber is a soft material, its deformations are at const
volume and we neglect the first two terms in Eq.~1! since
they involve volume change. The geometry of the remain
strains is vital and shown in Fig. 2.

The de Gennes@4# relative rotation couplings are uniqu
to nematic networks because they require an independ
rotational degree of freedom, i.e., the rotationsv of the di-
rector n. Its motion in the medium is coupled to the bod

FIG. 1. Rotation ofn about an axisv, and body rotationsV
rotating vectorsv. Only V2 andV1 ~not shown! have any effect on
vectors parallel ton.
©2002 The American Physical Society07-1
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M. WARNER AND S. KUTTER PHYSICAL REVIEW E65 051707
rotationV. Hence, the elastic energy unusually involvesan-
tisymmetriccomponents of shear strain. In Sec. VI, we a
cordingly show how to extract the rotational compone
from any finite shear. The first couplingD1 purely resists the
rotation of the director relative to a rotating, undeform
matrix. TheD2 term couplesn to the symmetric part of shea
in the plane that involvesn ~e.g., «zx if n05nz in equilib-
rium!. These are the shears«nm and «nk in Fig. 2. Since
infinitesimal, incompressible symmetric shear is equival
to stretch along one diagonal and compression along ano
it is reasonable that prolate molecules will reduce the cos
distortion by rotating their ordering direction to being
much as possible along the elongation diagonal, depicte
Fig. 3. Oblate elastomers rotate their director toward
compression diagonal to achieve the appropriate elastic
commodation. The spheroid represents the anisotropic s
distribution of the crosslinked polymers from which the n
work is composed.

A theorem of Golubovic and Lubensky~GL! @5# shows
that on symmetry grounds any solid with an internal deg
of freedom which is also capable of reaching an isotro

FIG. 2. The elements of strain in a uniaxially anisotropic m
dium. Dashed lines show the undistorted state, whereas the str
elements are shown by shaded areas. They divide into stretche«nn

along n, stretches«mm and «kk and distortions«mk in the plane
perpendicular ton, and distortions«nm and«nk encompassingn and
the perpendicular plane.

FIG. 3. Symmetric shear induces director rotation toward
elongation diagonal. The respective elongations and compres
along the diagonals are shown. The chain shape distribution
rotates. When mechanical shape changes of a network accom
date the rotations of the chain distribution without distortions, su
shape changes can take place at minimal energy cost.
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reference state must be invariant under the double se
rotations of both the reference and target states when con
ering elastic deformations. This has the remarkable con
quence that some elastic deformations must be soft. This
discovered independently and in a superficially differe
form when studying at finite deformations the elastic
sponse of nematic elastomers@3#. We sketch how this can be
understood for elastomers in order to explain the comp
soft modes we shall later discuss.

An effective shear modulus arises for an imposed ela
strain, when the nematic director is free to evolve optima
The elastic modulusm2 is reduced; by the symmetry argu
ment it must vanish to give no overall energy cost. If t
local rotational componentV of the deformation of the elas
tic matrix and the rotation of the director are coaxial, i.e.,V
and v are parallel and uniform, the argument is simp
Minimizing the relative-rotation part of the energy dens
~1!, 1

2 D1@(V2v)3n#21 1
2 D2 n•«= •@(V2v)3n#, one ob-

tains the optimal relative rotation for a given shear strain«= :

@~V2v!3n#52
D2

2D1
~n•«= ! or

~V2v!52
D2

2D1
@n•«=3n#. ~2!

We now substitute this back into the energy density and
tain for the rotation-strain terms:

1
2 D1@~V2v!3n#21 1

2 D2 n•«= •@~V2v!3n#

52
D2

2

8D1
@n•«=3n#2[2

D2
2

8D1
~«xz

21«yz
2!. ~3!

The last expression is written in the specific coordinate fra
where the initial directorn0 is parallel toz axis. We can now
unite this expression with the rest of the elastic energy d
sity, Eq. ~1! and thus obtain the effective rubber-elastic e
ergy that depends only on strains; the director does not
pear. For instance, in the specific coordinates of Fig. 2,

F5 1
2 m0 «zz

21 1
2 m1~«xx

212«xy
21«yy

2!

1 1
2 S m22

D2
2

4D1
D ~«xz

21«yz
2!. ~4!

The modulusm2 is renormalized tom22D2
2/(4D1) which

by the GL theorem must be zero, thus establishing a rela
between the constantsm2 , D1, and D2. The molecular
model, required below for finite deformations, produces l
ear continuum limiting values that also give

m2
R5m22

D2
2

4D1
→0. ~5!

Olmsted@6# first proposed this continuum mechanism b
hind the Golubovic-Lubensky theorem: shape depends on
orientation of an internal~nematic! degree of freedom, the
rotation of which causes a natural shape change at zero
for suitable solids. A general discussion of the GL argum
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UNIAXIAL AND BIAXIAL SOFT DEFORMATIONS OF . . . PHYSICAL REVIEW E 65 051707
and its extension to semisoftness and thresholds to rotatio
given in Ref. @7#. The experimental evidence for mechan
cally soft distortions is also discussed there.

One can picture the continuous rotation generating m
chanical distortion at low energy cost, see Fig. 3. The nat
long axis of the body, as defined by the principal axis
molecular shape, rotates in an attempt to follow the appa
extension axis. To the extent that macroscopic shape ch
can thus be imitated, there is no real accompanying dis
tion of polymer shape. We quantify this picture below wh
considering nonlinear elasticity theory.

III. FINITE SOFT ELASTICITY

A simple extension of classical rubber elasticity theory
nematic elastomers gives for the free energy density

F5 1
2 mTr~,= 0•l= T

•,=21
•l= !, ~6!

wherem is the rubber elastic shear modulus in the isotro
phase andl i j 5]Ri /]R0 j is the homogeneous deformatio
~gradient!. If we takel= to bel= 5d=1u= , then the symmetric
part ofu= is identical to«̃= of Eq. ~1! in the infinitesimal limit.

The chains are no longer characterized by spher
Gaussian distributions as in the classical case, but in gen
by anisotropic distributions. Thus the effective step len
tensors,= 0 initially and ,= currently after a distortionl= are
prolate ~or oblate! spheroids defining the second momen
that characterize the Gaussian distribution of chain spanR
in the the network, that is,̂RiRj&5 1

3 , i j L whereL is the arc
length of a chain. Thus a measure of the mean size of a c
is ,= 1/2 where we shall soon define the roots of tensors m
carefully. The tensor,= has one principal value, i along n
and,' perpendicular ton; thus

,=5S ,' 0 0

0 ,' 0

0 0 , i

D 5,'S 1 0 0

0 1 0

0 0 r
D ,

where r 5, i /,' . The extracted,' factor from ,= 0 cancels
with the 1/,' factor extracted from,=21 when both tensors
appear together in the trace formula~6! and we can hence
forth just consider the,= tensors in their reduced form tha
simply depends on the intrinsic anisotropyr. Anisotropy var-
ies betweenr 51.1→60. In this model of rubber elasticity
the spontaneous elongationlm, on going from the isotropic
to the nematic phase turns out to belm5r 1/3 and is thus a
direct measure ofr. Indeed spontaneous elongations in t
range oflm;1.03–4.00 are observed.

Now distortionsl= are no longer small, but must continu
to respect volume conservation, Det(l= )51 in the nonlinear
regime. The directorsn0 and n, of the initial and current
nematic states, may be greatly rotated from each other.

The remainder of this paper is concerned with explain
the character of the soft modes within finite elasticity theo
and extending this picture to that of soft modes in biax
nematic elastomers. We explore the role of rotations and
connections between the isolation of rotational compone
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of strain at finite amplitude~the spherical decompositio
theorem! and the relation of the roots of tensors to this p
ture.

IV. UNIAXIAL SOFTNESS

Consider the strain@6#

l= 5,= 1/2W= a ,= 0
21/2, ~7!

whereW= a is an arbitrary rotation by an anglea. There are
two continuous degrees of freedom describing the rota
connectingn and n0 and three degrees of freedom for th
rotation W= a . Hence, the strainl= is described by five con-
tinuous degrees of freedom and thus represents a large s
deformations.

If we insert such a strain into the trace formula~6!, as
well as its transposel= T ~equivalent to,= 0

21/2
•W= a

T
•,= 1/2 since

the ,= are symmetric! we obtain

Fel5
1
2 mTr~,= 0•,= 0

21/2
•W= a

T
•,= 1/2

•,=21
•,= 1/2

•W= a•,= 0
21/2!

[ 1
2 mTr~d= !5

3

2
m. ~8!

Canceling the middle section,,= 1/2
•,=21

•,= 1/25d= , allows the
W= terms to meet and givesW= T

•W= 5d= . Likewise disposing of
the ,= 0 terms, one obtains the final expressionFel5

3
2 m. This

is identical to the free energy of an undistorted network. T
nontrivial set of distortionsl= of this particular form, Eq.~7!,
have not raised the energy of nematic elastomer. From
results Det(A= •B= )5Det(A= )Det(B= ), Det(A= 21)5@Det(A= )#21,
and Det(W= )51 for all rotations W= , one can see tha
Det(l= )5Det(,= 1/2

•W= a•,= 0
21/2)51, that is, these soft mode

are volume preserving.
We saw pictorially in Fig. 3 that, on applying a stretc

perpendicular to the initial director, rotation of the chain d
tribution is accommodated by the very elongation we ha
applied, together with a shear. Two remarkable conseque
immediately follow from nematic elastomer response via
tation:

Impose anx extensionlxx . All the accompanying distor-
tions must be in the plane of rotation, that is, a transve
contractionlzz and shearslxz and lzx accommodate the
rotation of the distribution. No shears perpendicular to t
plane, that is, involvingy direction (lyy ,lyx , . . . , etc.!, are
needed. For a classical isotropic elastomerlyy5lzz

51/Alxx is demanded by incompressibility, whereas in s
elasticity there is no shrinkage in they direction (lyy51)
and the appropriate Poisson ratio is zero.

Figure 4 shows the initial and final states of which t
shear and partial rotation of Fig. 3 is an intermediate st
Softness must come to an end when the rotation is comp
and thez dimension has diminished in the proportionlzz

5A,' /, i and thex dimension extended in the proportio
lxx5A, i /,'. The original sizesA, i and A,' have trans-
formed toA,' and A, i, respectively. Thus softness wou
cease and director rotation be complete atlxx5r 1/2[lm

3/2.
The strainlm5(, i /,')1/3 is the spontaneous extension su
7-3
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M. WARNER AND S. KUTTER PHYSICAL REVIEW E65 051707
fered on cooling to the nematic phase. Likewise one
imagine from an oblique form of Fig. 4 that if the initia
directorn0 ~long axis of the shape ellipsoid! is not at 90° to
the imposed strain, then rotation and softness is comple
a smallerlxx,lm.

We give as a concrete example the set of soft distorti
l= soft5,= u

1/2
•,= 0

21/2, simplified by the absence of the arbitra
rotation matrixW= a . They are simply characterized~para-
metrically! by the angleu by which ,= 0 is rotated to,= u , that
is, by whichn0 is rotated ton. Putting in the dyadic forms for
,= 0

21/2 and,= u
1/2 into l= soft gives

l= soft5@d=1~Ar 21!nnT#•Fd=1S 1

Ar
21D n0n0

TG
5d=1~1/Ar 21!n0n0

T1~Ar 21!nnT

1~nn0!~22Ar 21/Ar !nn0
T. ~9!

If n0 is along ẑ and is rotated byu toward x̂, it becomesn
5 ẑcosu1x̂ sinu. We can write down a particular represe
tation of l= soft ~using the notations[sinu andc[cosu):

l= soft5 ẑẑTF12S 12
1

Ar
D s2G1 x̂x̂T@11~Ar 21!s2#1 ŷŷT

1 x̂ẑTS 12
1

Ar
D sc1 ẑx̂T~Ar 21!sc

[S 11~Ar 21!s2 0 ~121/Ar !sc

0 1 0

~Ar 21!sc 0 12~121/Ar !s2
D .

~10!

The soft modes are neither simple nor pure shear, but a m
ture of the two. Accordingly, the soft modes have an elem
of body rotation in addition to elongations, compressio
and pure shears. The importance of body rotations is
cussed before and after Eq.~2!. The degree of body rotation
is given in Sec. VI. Note that the extensional and compr
sional strains (lxx21) and (12lzz) are both proportional to

FIG. 4. Chain shape distribution before and after rotations. T
extent of soft extensions (lxx) perpendicular to the initial director is
set by the anisotropy of the molecular shape distribution. The m
roscopic dimensions are shown changing affinely with the distri
tion, for instance, thex dimension changing fromA,' to A, i.
05170
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sin2u. Thus the infinitesimal strainsuzz and uxx , at small
rotationsu, are proportional tou2. By contrastlxz and lzx
are proportional to sinu cosu and hence the infinitesimal
uxz anduzx are proportional tou—a lower order thanuxx and
uzz. There is no relaxation alongy, perpendicular to the
plane of rotationn, that is, lyy51. Also note that in the
isotropic limit (r 51) this particular strainl= soft5d= while the
general soft deformation~7! reduces to the null strainW= a , a
simple body rotation. Both are the trivial cases eviden
preserving the elastic energy at its minimum. The soft mo
become nontrivial deformations when the material becom
a nematic elastomer.

The soft modes start at no strain,l= 5d= , and as the director
u rotates from 0 top/2, they eventually end at

l= 5S Ar 0 0

0 1 0

0 0 1/Ar
D ,

that is an extensionlxx5Ar and a transverse contractio
lzz51/Ar .

The director rotation is taken up by a shape change so
there is no entropically expensive deformation of the ch
distribution as when a conventional elastomer deforms. T
shape tensor’s anisotropyr 5, i /,' characterizes the ratio o
the mean square size along the director to that perpendic
to the director. The square root of this ratio,Ar , gives the
characteristic ratio of average dimensions of chains in
network. During a soft deformation, the solid must chan
shape such that the rotating ellipsoid,= 1/2, characterizing the
physical dimensions of the distribution of chains, is acco
modated without distortion. The ellipsoid isR•,=21

•R51,
or in the principal framex2/r 1z251, that is, in section the
ellipse has semimajor axes ofAr and 1. Figure 5 illustrates
soft deformations of a nematic elastomer with chains of
isotropyr 52. The distortions are parametrized by the dire

e

c-
- FIG. 5. Soft deformations of a nematic elastomer with anis
ropy r 52. The deformations correspond to director rotations ou
50, p/6, p/4, p/3, 5p/12, andp/2 that parametrically generat
the distortions as discussed above. Note that the prolate sph
characterizing the distribution of chains, embedded in the distor
solid ~shaded and shown in section!, when rotated byu can be
accommodated without distortion. The reference, undeformed b
is shown in outline; the original distribution shown dashed.
7-4
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UNIAXIAL AND BIAXIAL SOFT DEFORMATIONS OF . . . PHYSICAL REVIEW E 65 051707
tor rotation u that ranges between 0 andp/2. The chain
shape tensor,= 1/2 rotates without distortion, just fitting in the
solid into which it embedded. The soft deformations of Fig
and Eqs.~9! and~10! of the body are in general nonsymme
ric. Below we decompose these into pure shears plus r
tions. One can think ofl= soft5,= u

1/2
•,= 0

21/2 as converting the
initial ellipsoid of Fig. 5 to a sphere by the action of th
inverse,= 0

21/2 and then recreating an ellipsoid at an angleu
with the action of,= u

1/2. This is precisely the scheme of Ref
@8,9# who consider an isotropic reference state~the interme-
diate created after the action of,= 0

21/2). We discuss this rota
tional invariance again below.

V. BIAXIAL SOFTNESS

Biaxial nematic phases are rare. They have been fo
~Finkelmannet al. @10,11#! in nematic polymers since on
has more complex molecular structural possibilities. In pr
ciple, such polymers could be used to make biaxially ne
atic elastomers. They would have rich mechanical proper

The shape tensor of a biaxial polymer is

,=5S ,1 0 0

0 ,2 0

0 0 , i

D .

Now the step lengths in the two directions perpendicular
n, ,1, and ,2, are distinguished. The tensor is reduced
taking out a factor of the mean perpendicular step leng
,'5 1

2 (,11,2), to give

,=5S 11p/2 0 0

0 12p/2 0

0 0 r
D

[rnnT1S 11
p

2DmmT1S 12
p

2D kkT

[d=1~r 21!nnT1
p

2
mmT2

p

2
kkT,

where the axes of the ellipsoid aren, m, and k ~with the
latter a third perpendicular axis given byk5n3m), see Fig.
6. The biaxiality is p52@(,12,2)/(,11,2)#5(,1
2,2)/,' .

With fixed n, in the biaxial case one can rotate the anis
tropic transverse sectionmk of the square root of the shap
tensor,= 1/2 and accommodate it without distortion by indu
ing shape changes in themk plane. These distortions are so
for exactly the same reasons as in the uniaxial case whn
suffered rotations in thenk or nm planes, see Figs. 5. Give
that there are~now in the laboratory frame! lxy soft modes
as well as thelzx andlzy forms ~which are now no longer
equivalent modes!, the order of softness has become ve
much greater.
05170
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A. Explicit examples of soft modes arising from biaxiality

The situation is exactly parallel to that of the soft she
~9! and ~10!. Now the soft modes are given by,= f

1/2,= 0
21/2,

wheref is instead the angle of rotation about the princip
directorn. The tensor,= 0

1/2 is

,= 0
1/25S A11p/2 0 0

0 A12p/2 0

0 0 Ar
D , ~11!

which will then be rotated byf. By analogy with Fig. 5, the
anisotropy in thex-y part of the matrix which is to be rotate
is Ar'5A(11p/2)/(12p/2)[A,1 /,2. This measures the
anisotropy of actual~root mean square! chain dimensions in
the plane perpendicular to the director. The resulting s
shears in thex-y plane arising from rotationsf about z
5n0 are

l= biaxial5S 12~121/Ar'!sf
2 ~12Ar'!sfcf 0

~1/Ar'21!sfcf 11~Ar'21!sf
2 0

0 0 1
D .

~12!

More complicated soft shears are possible if these shear
combined with those previously found in the uniaxial ca
For example, in the uniaxial case, Sec. IV above, subseq
rotation aboutn after the rotation ofn itself had no effect
since there was symmetry aboutn. Now that this is lost, such
rotations will reorient the perpendicular directorsm and k
and thereby induce additional soft shears.

B. General biaxial softness

If, however, the axis of rotation does not coincide with
principal axis as in the previous examples, we discover s
modes of lower symmetry, which only lead back to an und
formed body after the chain distribution has been rotated
2p. Consider, as an example of reduced symmetry, the s
ation when the chain distribution is rotated around a gen
axis in thex-y plane at an angleb to thex axis ~Fig. 7!: a
rotation of p ~Fig. 8! transfers the directorn ~along thez
axis! into 2n, but the unit vectorsm andk along the other

FIG. 6. The shape ellipsoid for a biaxially nematic polymer. T
section perpendicular ton is not circular, but has semiaxes of leng
A16p/2. Rotationsf aboutn[n0 generate distortions in thex-y
plane that softly accommodate the noncircular shape as it rota
7-5
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M. WARNER AND S. KUTTER PHYSICAL REVIEW E65 051707
two principal axes end up in a general position in thex-y
plane. The same final position of the ellipsoid of chain d
tribution can be obtained by a rotation around thez axis by
an appropriate angle. The corresponding body deforma
leaves allz coordinates invariant, but transforms the (x,y)
coordinates as if they have suffered a body rotation ofb
aboutz.

If we were to choose the axis of rotation in an arbitra
way, we would not observe this feature of invariantz com-

FIG. 7. Rotation of the chain distribution around an axis~arrow!
in thex-y plane at an angle ofp/3 with thex axis. The figure shows
intermediate states of rotation at an angle of 0,p, 1

6 p, 1
3 p, 1

2 p,
2
3 p, and 5

6 p. Figure ~8! shows the final stage of a rotation by a
angle ofp. The fine outline shows the initial body shape, where
the highlighted outline illustrates the body deformation as the el
soid of the internal chain distribution rotates. Here, we have cho
p56/5 andr 5200/45, or, equivalently, the principal axes of th
ellipsoid to be 6, 3, and 10, respectively.

FIG. 8. Rotation of the chain distribution byp around an axis in
the x-y plane at an angle ofp/3 with thex axis. The figure shows
two views of the same situation: the final ellipsoid together with
outlines of the bodies which indicate the corresponding soft m
deformation. The outline of the deformed body is highlighted. T
parameters are the same as in Fig. 7.
05170
-
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ponents after a rotation ofp. Only a full rotation of 2p
would lead back into a state of higher symmetry, in this ca
of course, the identity.

By rotating the ellipsoid of chain distribution, we crea
soft modes, which are closely related to the underlying sy
metry, which is the crystal class of the biaxial ellipsoid, t
dipyramidal orthorhombic class.

Comparing with Eq.~7!, we see that so far we have set th
rotationW= a to be the identity. If, however, we were to allow
a general rotation, we would find an even larger set of de
mations, in fact described by 6 degrees of freedom: the
ditional rotationsW= a and the rotations connecting the prin
cipal frames of the initial and final ellipsoids each introdu
3 degrees of freedom.

VI. ROTATIONS, SYMMETRIC STRAINS, AND THE
ROOTS OF TENSORS

We have seen in Eqs.~1!–~4! yielding softness that rota
tions are vital to understanding soft elasticity. The cartoon
Fig. 6 shows that soft shears are not symmetric and he
there must be a component of body rotation present. Here
explore the role of rotations in symmetry requirements.
then explicitly extract the rotational component from gene
distortions and from soft deformations in particular. The
quirements for extracting the rotational components of
strain tensor are intimately related to finding the square ro
of tensors that we discuss here since they are used in
structing soft deformations.

Any general matrixM= can be broken down into product
S= •O= or O•S= 8 of symmetric matricesS= andS= 8 and orthogo-
nal matricesO= and O= 8, which can be restricted to prope
rotations. In effect, one has a pure shear preceded or
lowed by a body rotation~the polar decomposition theorem
@12#!.

Note that in the infinitesimal case, we haveS=51=1dS= and
O= 51=1dO= , hencedS=5dS= T and dO= 52dO= T. Analogous
statements hold for the matricesS= 8 andO= 8. This shows that
the rotation matricesO= and O= 8 are related to the antisym
metric part of the deformation in the infinitesimal limit.

Applied to the deformationl= , we write

l= 5l= L
•V= or U= •l= R, ~13!

where the rotations are denoted byV= or U= depending upon
whether they act on the reference or target spaces, res
tively, of the deformation. The form of the accompanyin
symmetric deformations will depend on the order; they
denoted byl= R and l= L, respectively, and yield the Cauchy
Green tensorsC= and B= , respectively: C= 5l= T

•l= and B=
5l= •l= T.

We summarize classical elasticity theory to highlight t
differences with nematic rubber elasticity. The deformati
~gradient! is

l i j 5]Ri /]R0 j . ~14!

If the target space (ST) deforms under rotations represent
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by the matrixU= , asR85U= •R, and the reference space (SR)
deforms under rotationsV= asR085V= •R0, then the deforma-
tion tensor deforms as

l i j8 5Uik]Rk /]R0lVl j
T , ~15!

l= 85U= •l= •V= T or l= 5U= T
•l= 8•V= .

~16!

Thusl= records the character of both the target and refere
states, a property that will be essential in nonideal nem
elastomers where an isotropic reference state canno
reached. The connection with both spaces is quite differen
character from that of the Cauchy tensors. Thus the com
nation

C= 5l= T
•l= 5V= T

•l= 8T
•U= •U= T

•l= 8•V=

5V= T
•l= 8T

•l= 8•V= 5V= T
•C= 8•V= ~17!

is manifestly invariant under body rotationsU= of the final
~target! spaceST and transforms as a second rank tensor
SR . Since isotropic systems are invariant to rotationsV= of
SR , the system’s final energy must be invariant to rotatio
of SR . ThusF is a function of the rotational~in SR! invari-
ants of C= and is assured by the above of being invaria
under rotations ofST . As an example, the isotropic rubbe
elastic free energy, setting,= 05,=215d= in Eq. ~6! is

F5 1
2 mTr~C= !5 1

2 mTr~V= T
•C= 8•V= !

5 1
2 mTr~C= 8•V= •V= T!5 1

2 mTr~C= 8! ~18!

~by cyclical properties of the trace!. Likewise, B= 5l= •l= T is
invariant to rotations of the reference state and transfo
like a second rank tensor in the target state.

Thus we see that ‘‘objectivity,’’ frame indifference, i
built into classical elasticity theory from the outset. Nema
elastomers are much more subtle. In continuum theory
have seen that rotations and symmetric shears enter,
separately~through the de GennesD1 term! and coupled
~through theD2 term!. In finite elasticity, we see in the trac
formula that the initial and final orientations of the solid a
its directors enter via the tensors,= 0 and ,=21 and there are
not combinations likeB= andC= which eliminate rotations. Fo
instance, insertingU= •l= R into the trace result, one obtains

F5 1
2 mTr~,= 0•l= R T

•@U= T
•,=21

•U= #•l= R!, ~19!

where the@•••# have been inserted to emphasize that a b
rotation ofST effectively adds to the rotation ofn. That is, a
new,= 8 evolves:,= 8215U= T,=21U= . ~The additional rotation is
not necessarily coaxial with that which tookn0 to n.! Not
unexpectedly, we see the effect ofU= compounded with the
rotations implicit in ,=21 since they both live in the targe
space.

Other approaches have been taken@8,9# to soft elasticity,
which apparently circumvent the necessity to follow orien
tions in both spaces, and restore objectivity. One can m
sure all deformationsl= from an isotropic reference state, th
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is there is encoded into thel= first a spontaneous deformatio
to current conditions of temperature, then a deformation
posed with respect to this intermediate state. Under th
conditions the free energy must automatically be invari
under operations ofV= , since the reference state is isotrop
and without a directorn0 to keep track of. Difficulties arise
then when nematic elastomers are onlysemisoft, that is, they
do not deform entirely at constant free energy, because
do not have a high temperature isotropic reference st
However, they do suffer director rotation, very low ener
trajectories inl= space, and a lack oflyy relaxation perpen-
dicular to the plane ofn’s rotation @13#. In these cases, th
complete cancellation renderingm2

R5m22(D2
2/4D1)→0

fails, but nevertheless deformations are qualitatively soft a
one has to keep track of both directionsn0 and n as strain
evolves.

A. Square roots of tensors and the polar
decomposition theorem

We quote the classical conditions@12# for the square roots
of tensors, that arise too in the all-important condition f
polar decomposition that is required for nematic elastom

If A= is nonsingular, withm distinct eigenvalues and with
n Jordan blocks, thenA= has >2m and <2n nonsingular
square roots. At least one of these roots is a polynomial inA= .

The proof of the polar decomposition theorem~PDT! also
offers a practical algorithm for decomposition: take a no
ingular l= and construct the manifestly symmetricl= Tl= . Take
the square rootG= of l= Tl= that is a polynomial inl= Tl= . Since
l= Tl= is symmetric, then so isG= 5Al= Tl= . Then defineQ=
5G= 21l= . Clearly, Q= TQ= 5d= , that is, Q= represents rotations
From this one recoversl= 5G= Q= .

B. Symmetric strain and body rotation of soft modes

We investigate the special case of uniaxial soft modes
thex-z plane. They are achieved by rotating the chain dis
bution around they axis. The resulting deformation keeps th
y-components of the body constant. Hence these soft mo
are effectively 232 and can be easily related to Eq.~10! and
Fig. 5.

An explicit example of the PDT for decomposing a ge
eralx-z distortionl= into a combination of symmetric distor
tion l= R followed by a body rotationU= , about they axis by an
anglea is

l= soft5S lxx d

d8 lzz
D 5S c s

2s cD S a d

d bD[U= •l= R.

~with s5sina andc5cosa). One can confirm that the rota
tion is:

tana5~d2d8!/~lxx1lzz! ~20!

and thus, for instance, for sina,

sina5
1

D
~d2d8! with D25~lxx1lzz!

21~d2d8!2.
7-7
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Of course there is no body rotation forl= symmetric, that is,
d5d8. One can also confirm that the symmetric shear ten
is

l= R5
1

D

3S lxx~lzz1lxx!2d8~d2d8! lxxd1d8lzz

lxxd1d8lzz lzz~lzz1lxx!1d~d2d8!
D . ~21!

The results~20! and~21! break the soft modes down int
a symmetric shearl= R followed by a body rotationU= through
an anglea about they axis. Thus the soft mode isl= soft5U=
•l= R. We continue to parametrize them with the director
tation u. The body rotation is through an anglea given by

tana5
sinu cosu~Ar 21!2

2Ar 1sin2u~Ar 21!2

5
tanu~Ar 21!2

2Ar 1tan2u~r 11!
. ~22!

For small shear~small director rotationu), the component
of body rotation is small too and proportional tou:

a'u
~Ar 21!2

2Ar
. ~23!

For large rotations,u'p/2, the rotationa vanishes as we
have seen in Fig. 5. Thus it is only at first that body rotat
plays a part in accommodating the rotating chains. As
rotation of chains approachesp/2, the body is simply ex-
tended or compressed along the principal axes of the orig
chain distribution.

The corresponding symmetric shear straind, the off-
diagonal component ofl= R, is

d5
1

D

sinu cosu~r 21!

Ar
,

FIG. 9. Off-diagonal elementd of the symmetric shearl= R, and
anglea of the rotationU= ~dotted line! plotted against director ro
tation u for the soft deformations of Fig. 5 for a nematic elastom
with anisotropyr 520.
05170
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which, for small distortions is also proportional tou, bearing
in mind thatD is constant at first order inu:

d5
1

D

u~r 21!

Ar
. ~24!

As we have seen in Fig. 5, it also vanishes atu5p/2,
where no further accommodation of the shape tensor by
tation is possible. In Fig. 9, we show the rotation and o
diagonal element of the symmetric shear occurring dur
soft deformations betweenu50 andp.

Notice that both quantities are linear inu for small distor-
tions. As the director of the chain distributions is rotat
beyondp/2, the solid body rotationa and the off-diagonal
element of the sheard become negative. At a director rota
tion of p, the original body shape is recovered, as it sho
be in an uniaxial nematic system under reflection of the
rectorn→2n.

Similarly, the behavior of the pure shear is instructive: f
this purpose, we plot in Fig. 10 the two eigenvalues ofl= R,
which serve as a good measure of the net presence of s

Note that, due to incompressibility, the product of the tw
eigenvalues is constant at 1. Both eigenvalues are linea
small u, saturate at valuesAr and 1/Ar , respectively, for a
director rotation ofp/2, where the soft mode becomes
simple compression and extension along the principal a
At a rotation ofp, we recover the eigenvalues of the identi
matrix.

From Eq.~10!, we see that the compression and extens
in thex andy directions are quadratic inu for small director
rotations. In other words,uzz anduxx too are proportional to
u2}a2}d2 @by Eqs.~24! and ~23!#.

VII. CONCLUSIONS

Soft deformations of nematic elastomers result from
rotation of the anisotropic chain shape distribution witho
distortion and therefore without rubber elastic free ene
cost. This is by contrast to classical rubber, where distors
of the distribution lowers entropy and raises the free ene

r

FIG. 10. The two eigenvalues of the pure shearl= R for a nematic
elastomer with anisotropyr 520. For a director rotation ofp/2, the
soft mode deformation becomes a pure shear with extension
compression ratioAr or 1/Ar , respectively.
7-8
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Explicit forms of these soft modes are derived in the case
biaxial nematic elastomers using the Olmsted method of
square roots of tensors developed for the uniaxial case.
both cases we show geometrically what these deformat
look like. They correspond to rotations of prolate distrib
tions being accommodated by elastic strains of the body t
are inscribed into.

The elasticity of nematic elastomers depends, unlike
classical elastomers, on body rotations~since these can b
with respect to the underlying nematic director!. At finite
strains it is important to isolate the rotational component
er

al
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the generally nonsymmetric deformations. We make con
with the polar decomposition theorem in this context. In d
ing so we discuss the roots of tensors that are employe
finding the manifold of soft deformation tensors.

ACKNOWLEDGMENTS

S.K. acknowledges the support of an Overseas Rese
Scholarship, of the Cavendish Laboratory and of Corp
Christi College. M.W. thanks the A. v. Humboldt Foundatio
for the award of a Humboldt Research Prize.
X.
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